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Abstract

The theory of electrodynamics can be cast into biquaterion form. Usually
Maxwells equations are invariant with respect to a gauge transformation of
the potentials and one can choose freely a gauge condition. For instance,
the Lorentz gauge condition yields the potential Lorenz inhomogeneous wave
equations. It is possible to introduce a scalar field in the Maxwell equations
such that the generalised Maxwell theory, expressed in terms of the potentials,
automatically satisfy the Lorenz inhomogeneous wave equations, without any
gauge condition. This theory of electrodynamics is no longer gauge invariant
with respect to a transformation of the potentials: it is electrodynamics with
broken gauge symmetry. The appearence of the extra scalar field terms can
be described as a conditional current regauge that does not violate the con-
servation of charge, and it has several consequences:
- the prediction of a longitudinal electroscalar wave (LES wave) in vacuum.
- superluminal wave solutions, and possibly classical theory about photon tun-
neling.
- a generalised Lorentz force expression that contains an extra scalar term.
- generalised energy and momentum theorems, with an extra power flow term
associated with LES waves.
A charge density wave that only induces a scalar field is possible in this theory.
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1 Introduction: quaternions and biquaternions

The theory of electrodynamics can be formulated very efficiently in biquaternion
form . Hamilton’s quaternions [1] were used also by J.C. Maxwell in his Treatise
on Electricity and Magnetism [2] [3]. A. Waser has used the biquaternion form also
in [4] . The quaternion is very suitable to express the typical 4-qualities in physics,
such as 4-position, 4-speed, 4-momentum, 4-force, 4-potential and 4-current [5]. A
quaternion is defined as next:

X = x0 + ix1 + jx2 + kx3 (1)

where i, j, k are hypercomplex roots of -1, and x0, x1, x2, x3 are real numbers.

ii = jj = kk = −1 ij = −k jk = −i ij = −k (2)

The scalar part of the quaternion is represented by x0, while the vector part is
represented by x1, x2 and x3. If we define ~x = (x1, x2, x3) and ~i = (i, j, k) then we
can notate a quaternion in a short scalar vector form by the use of the internal
vector product:

X = x0 +~i · ~x (3)

This notation makes the use of prefixes S or V, for indicating the scalar or vector
part of a quaternion, redundant. Now the internal and external vector products
and the vector itself can be used in quaternion equations. The quaternion sum and
product are as follows:

X + Y = (x0 + y0) +~i · (~x + ~y) (4)
XY = (x0y0 − ~x · ~y) +~i · (x0~y + y0~x + ~x× ~y) (5)

This product is the consequence of the product rules of the Hamiltonian numbers
i, j, k as defined in (2). Note that XY 6= YX, because ~x×~y = −~y×~x. The quaternion
product is associative and distributive:

X(YZ) = (XY)Z X(Y + Z) = XY + XZ (6)

The conjugate and the length of a quaternion are defined as follows:

X∗ = x0 −~i · ~x (7)

|X| =
√

XX∗ =
√

x2
0 + ~x · ~x =

√
x2
0 + x2

1 + x2
2 + x2

3 (8)

By replacing the real numbers x0, x1, x2, x3 for complex numbers:

X = x0 + iy0 +~i · (~x + i~y) (9)

a complex quaternion is obtained [6]. A complex quaternion is also called a bi-
quaternion. The imaginary number i, should not be confused with ~i = (i , j , k). In
general, a single biquaternion equation

(a0 + ib0) +~i · [~a + i~b] = (c0 + id0) +~i · [~c + i~d] (10)

is a compact notation of two scalar equations and two vector equations:

a0 = c0

b0 = d0

~a = ~c
~b = ~d (11)

For instance, the four Maxwell equations can be expressed by just one biquaternion
equation.
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2 Minkowski space and biquaternion operators for
physics

The four dimensional Minkowski space can be expressed in biquaternion form:

X = (ict +~i · ~x) (12)

where X is the position quaternion. Notice that x = 0, ~y = ~0 and y = ct. In
general a biquaternion represents 8-dimensional space. In case we want to represent
4-dimensional Minkowskian space in quaternions we set x = 0 and ~y = ~0. The
lenght of X is invariant under transformation between inertial systems:

|X| =
√

(ict)2 + ~x · ~x =
√

x2
1 + x2

2 + x2
3 − c2t2 (13)

The biquaternion velocity is defined as:

V =
dX
dt

=
d(ict)

dt
+~i · d~x

dt
= ic +~i · ~v (14)

The length of V is:

|V| =
√

v2 − c2 = ic

√
1− v2

c2
(15)

In stead of using V and dt we might define a relativistic time differential dτ (time
dilatation):

dτ =
|V|
ic

dt =

√
1− v2

c2
dt (16)

which is known as the ”proper time”, and define a ”relativistic biquaternion speed”:

U =
dX
dτ

=
ic
|V|

dX
dt

=
icV
|V| (17)

but then it is obvious that |U| = ic and this makes no sense [7]. So either we
use the four-dimensional velocity V and the time differential dt, or we use the
concept of time-dilatation dτ and a three-dimensional velocity d~x

dτ . We choose for
the first option, because it does not make sense to mix 4-dimensional qualities with
3-dimensional qualities in one theory. Now that a physical space has been described,
three biquaternion operators for the use of physics are defined as follows:

Nabla : ∇ =
i
c

∂

∂t
+~i · ~∇, ~∇ = (

∂

∂x1
,

∂

∂x2
,

∂

∂x3
) (18)

d′Alembert : 2 = −|∇|2 = −∇∇∗ =
1
c2

∂2

∂t2
− ~∇ · ~∇ (19)

3 Electrodynamics in biquaternion form

The quaternion electromagnetic potential and the quaternion current are defined as
follows:

A =
i
c
Φ +~i · ~A (20)

J = icρ +~i · ~J = icρ +~i · ρ~V = ρV (21)

By applying the quaternion product we can determine the differential of the elec-
tromagnetic potential, ∇A:

∇A =
(

i

c

∂

∂t
+~i · ~∇

)(
i

c
Φ +~i · ~A

)
=

−
(

1
c2

∂Φ
∂t

+ ~∇ · ~A

)
+~i ·

[
~∇× ~A +

i
c

(
∂~A
∂t

+ ~∇Φ

)]
(22)
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If one defines the electric vector field, magnetic vector field, and an extra scalar
field as follows:

~E = −∂~A
∂t

− ~∇Φ (23)

~B = ~∇× ~A (24)

S =
1
c2

∂Φ
∂t

+ ~∇ · ~A (25)

then

∇A = −S +~i ·
[
~B− i

c
~E

]
(26)

Usually the Maxwell equations are defined by (in biquaternion form):

−∇∗(∇A + S) = µJ or by (27)
2A−∇∗S = µJ or by (28)

−∇∗
(
~i ·

[
~B− i

c
~E

])
= µJ (29)

It is easy to verify that these three equations are identical. Equation (31) can be
expanded by applying the quaternion product:

(
− i

c
∂

∂t
+~i · ~∇

)(
~i ·

[
~B− i

c
~E

])
=

−~∇ · ~B +
i
c
~∇ · ~E +~i ·

[
~∇× ~B− 1

c2

∂~E
∂t

− i
c

(
∂~B
∂t

+ ~∇× ~E

)]
(30)

The biquaternion equation is a short hand notation of the famous Maxwell equations
in seperated scalar and vector form:

1
c2

∂2Φ
∂t2

− ~∇2Φ− ∂

∂t

(
1
c2

∂Φ
∂t

+ ~∇ · ~A
)

= c2µρ =
ρ

ε
(31)

1
c2

∂2~A
∂t2

− ~∇2~A + ~∇
(

1
c2

∂Φ
∂t

+ ~∇ · ~A
)

= µ~J (32)

~∇ · ~B = 0 (33)
~∇ · ~E = c2µρ =

ρ

ε
(34)

~∇× ~B− 1
c2

∂~E
∂t

= µ~J (35)

∂~B
∂t

+ ~∇× ~E = 0 (36)

The Lorentz 4-force density biquaternion, F = i
cP+~i ·~F, is defined by the following

biquaternion equation:
F = J(∇A + S) (37)

Applying the quaternion product:

J(∇A + S) = ρV (∇A + S) = ρ(ic +~i · ~V)
(
~i ·

[
− i

c
~E + ~B

])

= −~J · ~B +
i
c
~J · ~E +~i ·

[
(ρ~E + ~J× ~B) + ic(ρ~B− 1

c2
~J× ~E)

]
(38)
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In seperated scalar and vector form, the Lorentz force equation is:

0 = ~J · ~B (39)

P = ~J · ~E (40)
~F = ρ~E + ~J× ~B (41)

~0 = ρ~B− 1
c2

~J× ~E (42)

In the biquaternion Lorentz force equation, J can be eliminated by substituting the
biquaternion Maxwell equation:

F =
1
µ
∇∗(∇A + S)(∇A + S) (43)

By expanding the imaginary scalar part and the real vector part of this equation
one finds the well known energy and momentum theorems:

µ(~J · ~E) = − ∂

2∂t

[
1
c2

E2 + B2

]
− ~∇ · ( ~E × ~B) (44)

µ
(
ρ~E + ~J× ~B

)
=

[
1
c2

(
(~∇ · ~E) ~E + (~∇× ~E)× ~E

)
+ (~∇× ~B)× ~B

]

− 1
c2

∂( ~E × ~B)
∂t

(45)

This demonstrates that electrodynamics can be cast in biquaternion form. By con-
sidering a non-zero real scalar and imaginary vector part in the current biquater-
nion, one can introduce the magnetic monopole and magnetic current. A magnetic
4-current is imaginary with respect to the electric 4-current. The total current can
be called an 8-current. One can also consider an 8-potential or an 8-Lorentz force
with a non-zero real scalar and imaginary vector part in A or in F. The biquate-
rion mathematics enables a logical treatment of such extentions of the theory of
electrodynamics.

4 A gauge asymmetrical theory of electrodynam-
ics that includes scalar field S

No matter if S=0, which is called the Lorenz gauge condition, the biquaternion
Maxwell equation is invariant with respect to a gauge transformation of the bi-
quaternion potential:

A → A′ = A−∇∗Γ (46)

where Γ is an arbitrary scalar function. The easiest way to prove this is by showing
that only the S field is changed by such a gauge transformation:

∇A → ∇A′ = ∇A−∇∇∗Γ = ∇ A + 2Γ (47)

and since 2Γ is strictly a scalar function, only the S field is transformed:

S → S′ = S +∇∇∗Γ = S−2Γ (48)

Electrodynamics is gauge invariant, because the expression (∇A + S) in each equa-
tion is invariant. It is asssumed that ~∇ · ~A can be chosen freely, and that any
potential can be gauge transformed into another potential such that the two po-
tentials are not different with respect to measurable physics. Potentials can be
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transformed into potentials that satisfy a condition, such as the Lorenz condition
[8] [9]: S’ = 0. The latter requires that 2Γ = S. If we only consider potentials that
satisfy the Lorenz condition (S=0) then the gauge transformation Γ has to satisfy
2Γ = 0. It is not clear if the wave-nature of Γ has a physical meaning. In case S=0,
then the Maxwell equation is defined also by 2A = µJ, which is called the Lorenz
inhomogeneous wave equation.

Another type of gauge transformation exists that gives Lorenz’s inhomogeneous
wave equation:

µJ → µJ′ = µJ−∇∗Γ (49)

where Γ is an arbitrary scalar field. This is a current gauge transformation. The
Maxwell equation is not invariant with respect to this transformation. A regauge
of the current J is the special transformation Γ = S. After a current regauge, the
resulting Maxwell equation automatically has the form of the Lorenz inhomogeneous
wave equation in case it is described in terms of the potentials:

−∇∗(∇A + S) = µJ−∇∗S or (50)
2A = µJ or (51)

−∇∗
(
−S +~i ·

[
~B− i

c
~E

])
= µJ (52)

Therefore, solutions of the Maxwell equation are also solutions of the inhomogeneous
wave equation. The transformed Maxwell equation also contains scalar field S and
is a generalisation of the original Maxwell equation. Rewriting this equation in
seperate scalar and vector equations results into the generalised Maxwell equations:

1
c2

∂2Φ
∂t2

− ~∇2Φ = c2µρ =
ρ

ε
(53)

1
c2

∂2~A
∂t2

− ~∇2~A = µ~J (54)

~∇ · ~E +
∂S
∂t

= c2µρ =
ρ

ε
(55)

~∇ · ~B = 0 (56)

∂~B
∂t

+ ~∇× ~E = 0 (57)

~∇× ~B− 1
c2

∂~E
∂t

− ~∇S = µ ~J (58)

Analogous to the addition of the displacement current, which allowed Maxwell to
derive the homogeneous field wave equations, the addition of the scalar field related
charge and current terms allow for the derivation of the inhomogeneous potential
wave equations without the Lorenz gauge. Because the potential gauge freedom is
lost, one should regard the expression S as a real and physical field. It is doubtful
if potential gauge freedom exists, which means that ∇ · ~A has an arbitrary value,
considering the fact that S can be deduced from the technical specifications of
electrodynamic equipment. We assume it is possible that S can be measured, just
like the electric or magnetic field. Next, it is shown that a natural current gauge
must satisfy the condition 2Sg = 0. First, the gauge transform of the partial
derivative of current is described by:

∇(µJ) → ∇(µJ′) = ∇(µJ)−∇∇∗Sg = ∇(µJ) + 2Sg (59)

6



Since 2Sg is strictly a scalar, only the scalar part of ∇(µJ) is transformed:

µ(
∂ρ′

∂t
+ ~∇ · ~J′) = µ(

∂ρ

∂t
+ ~∇ · ~J) + 2Sg (60)

Because charge is conserved, the scalar part of ∇(µJ) and of ∇(µJ′) is zero:

µ(
∂ρ

∂t
+ ~∇ · ~J) = µ(

∂ρ′

∂t
+ ~∇ · ~J′) = 0 (61)

And therefore 2Sg = 0. Hence, a natural regauge is possible only if 2S = 2Sg = 0.
The current gauge condition has a straightforward and physical interpretation: the
conservation of charge. If an electrodynamical system has a natural tendency to
satisfy the Lorenz inhomogeneous wave equation, then this can be described by
a conditional current regauge, such that charge conservation is not violated. By
assuming that the scalar is zero everywhere (S=0) the original Maxwell equations
are found. The condition S=0 is not a free-to-choose gauge condition, but it simply
is a physical condition. A physical interpretation of the current gauge transform is
the following.

Within the framework of quantum electrodynamics, charge polarizations are a pos-
sibility in vacuum, and this means that the charge density and current density in
the vacuum can fluctuate. A current gauge transformation is the classical equiva-
lent of this concept. A regauge of the biquaternion current can be regarded as the
change in vacuum charge-current density, such that the potentials associated with
both real and ”virtual” charge-current, are solutions of the Lorenz inhomogeneous
wave equation. During a current regauge the microscopic ”virtual” charge-current
fluctuations are forced by the presence of a real charge-current to form an orderly
pattern on a larger scale. The current regauge is therefore a physical process, in
stead of a pure mathematical transformation, and we suggest that the entropy of
the current regauge process is negative.

4.1 Vacuum field wave solutions

Assuming the current gauge condition is true, the partial derivatives of the left
and right hand side of the Maxwell equation are gauge invariant. After current
regauging, this equation is:

∇2A = −∇∇∇∗A = −∇∇∗∇A = 2

(
−S +~i ·

[
− i

c
~E + ~B

])
= µ∇J (62)

and reformulated into seperate scalar and vector wave equations:

1
c2

∂2S
∂t2

− ~∇2S = µ

(
∂ρ

∂t
+ ~∇ · ~J

)
= 0 (63)

1
c2

∂2~E
∂t2

− ~∇2~E = µ

(
−∂~J

∂t
− c2~∇ρ

)
(64)

1
c2

∂2~B
∂t2

− ~∇2~B = µ
(

~∇× ~J
)

(65)

In case J=0 the latter equations become the homogeneous field wave equations. It is
well known that, for S=0 and J=0, a transversal electromagnetic wave is a natural
solution of the Maxwell equations. Now suppose that ~B = 0 and J=0. From the
generalised Maxwell equations the following wave equations can be deduced:

1
c2

∂2S
∂t2

− ~∇2S = 0 (66)
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1
c2

∂2~E
∂t2

− ~∇2~E = 0 (67)

that have the solutions:

~E = ~E0ei(~k·~r−ωt) (68)

S = S0ei(~k·~r−ωt) (69)
ω

c2
~E = ~kS (70)

~k · ~E = ωS (71)

This is a longitudinal electroscalar wave (LES wave). The possible existence of
such a wave might be the subject of experimentation, and therefore our theory is
testable. Associated with a LES wave is an energy flow density vector ~ES. In the
next sections it is shown that this energy flow density vector is part of an extended
energy theorem. A more general set of vacuum wave equations can be found via
the following equation

~∇S +
k
c2

∂~E
∂t

= 0 (72)

After combining the extended Maxwell equations with this extra field equation, we
find the following vacuum wave equations

~∇ · ~∇S− k
c2

∂2S
∂t2

= 0 (73)

~∇~∇ · ~E− k
c2

∂2~E
∂t2

= 0 (74)

~∇× ~∇× ~B +
(1− k)

c2

∂2~B
∂t2

= 0 (75)

~∇× ~∇× ~E +
(1− k)

c2

∂2~E
∂t2

= 0 (76)

(77)

These equations are valid wave equations only if k ∈ [0, 1] and have superluminal
solutions for k ∈< 0, 1 >. The longitudinal part of the electric field interacts
with the S field, forming a LES wave with speed c√

k
. The transversal part of the

electric field interacts with the B field, forming a TEM wave with speed c√
1−k

.

For k = 1
2 both waves have speed c

√
2. For k=0 the TEM wave solution is the

usual luminal TEM wave with speed c, and the LES wave speed is infinite. This
means there might be a simultaneous coexistance of retarded and immediate action
at-a-distance. Vice verse, for k=1 the speed of the LES wave is c, and the speed
of the TEM wave is infinite, and this might be the classical equivalent of tunneling
photons. Such photons are accompanied by LES waves that have phase velocity
of c, according to this theory. If one of the wave types has infinite speed then the
other wave type has speed c, and this adds new meaning to the value c. In [15]
a superluminal microwave with average speed of 4.7c was measured by G. Nimtz.
This value is close to

√
22c, and this suggests a value of k = 21

22 and a LES wave

speed of
√

22
21c ≈ c. G.F. Ignatiev [16] measured a signal speed of 1.12c, and this

value is close to
√

5
4c. This suggest a value of k = 1

5 and a LES wave with speed√
5c ≈ 2.24c.
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4.2 The generalised Lorentz force

A generalised Lorentz force definition is expressed by the following equation:

F = J∇A (78)

In expression J∇A the scalar field S is no longer cancelled, while in J(∇A + S) in
classical Electrodynamics the S field is cancelled. This is similar to the generalisa-
tion of the Maxwell equation. In the next section it is shown that this generalisation
of the Lorentz force is also based on the current regauge transformation. Rewriting
the latter biquaternion equation into separate scalar and vector equations:

~J · ~B = 0 (79)
~J · ~E− ρc2S = P (80)

ρ~E + ~J× ~B− ~JS = ~F (81)

~B− ~v
c2
× ~E = 0 (82)

The first equation shows two power flow terms: ~J ·~E and ρc2S. The first term is the
electrical energy flow that is usually associated with a current ~J in a wire, and that
compensates for the dissipated energy. The second power flow term is new and has
to be associated with a ’static’ charge. It is like the Zero Point Energy exchange
between a charge and the vacuum. The energy flows inwards and outwards with
respect to the volume of the charge. The fourth equation defines the vector Lorentz
force and it contains an extra term ~JS. This term is similar to a radiation reaction
force, but it is independent of the acceleration of the charge.

It is also interesting to examine the special case of S~v = ~E . For this case the
Lorentz force quaternion reduces to:

ρ(v2 − c2)S = P (83)
~0 = ~F (84)

This means that a charge can exchange energy with an external electromagnetic
potential due to the S-field, despite of the absence of an electromagnetic force. The
speed of the particle is constant in this situation. If S and ~E are also wave solutions
then the relation S~v = ~E shows a longitudinal electroscalar wave with speed ~v.
The energy exchange diminishes with v2S and becomes zero when v approaches c.
In [14] an alternative description of the De Brogly wave is given, based on a new
principle of intrinsic (belonging to the particle) potential energy of electromagnetic
origin. The wave nature of a particle is in essence a periodic transformation of
kinetic energy into intrinsic potential energy, and vice verse. The intrinsic potential
energy of a particle might as well be electroscalar in nature. In other words: the
LES wave with S~v = ~E might be a new description of the De Brogly wave if we
consider the S field and the E field as intrinsic to the particle.

4.3 Generalised energy and momentum theorems

Within the generalised Lorentz force equation J∇A = F we can substitute for J
its definition in terms of potentials, 1

µ2A. Then we get:

2A∇A = µF (85)

When we evaluate the imaginary scalar part of this equation in terms of fields and
sources, we get the following energy equation:

µ(~E · ~J− ρc2S) = − ∂

2∂t

[
S2 +

1
c2

E2 + B2

]
− ~∇ · (~E× ~B + ~ES) (86)
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The term ~ES represents an extra power flux vector that can be associated with the
longitudinal electroscalar wave. The Poynting vector ~E × ~B is usually associated
with the transversal electromagnetic wave. The energy term S2 is the energy stored
in the field S. The real vector part of the biquaternion equation is:

µ
(
ρ~E + ~J× ~B− ~JS

)
=

[
1
c2

(
(~∇ · ~E)~E + (~∇× ~E)× ~E

)
+ (~∇× ~B)× ~B

]
+

[
S~∇S− ~∇× (S~B)

]
+

1
c2

∂(~ES− ~E× ~B)
∂t

(87)

This equation is the extended momentum theorem in the generalised Maxwell the-
ory. Usually, Maxwell’s stress tensor represents the terms between the first pair
of square brackets. It can be generalised, such that it represents also the terms
between the second pair of square brackets. The power flow terms of both TEM
waves and LES waves are present also in this equation.

These equations can be derived also by applying the current regauge to the original
energy and momentum theorems:

~J · ~E →
(
~J +

1
µ

~∇S
)
· ~E =

~J · ~E +
1
µ

(~∇S) · ~E =

~J · ~E +
1
µ

~∇ · (S~E)− S~∇ · ~E =

~J · ~E +
1
µ

(
~∇ · (S~E)− S~∇ · ~E

)
=

~J · ~E +
1
µ

(
~∇ · (S~E)− S

(
ρ

ε
− ∂S

∂t

))
=

(
~J · ~E− Sc2ρ

)
+

1
µ

(
~∇ · (S~E) +

∂(S2)
2∂t

)
(88)

ρ~E + ~J× ~B →
(

ρ− ε
∂S
∂t

)
~E +

(
~J +

1
µ

~∇S
)
× ~B =

(
ρ~E + ~J× ~B

)
− ε

∂S
∂t

~E +
1
µ

~∇S× ~B =

(
ρ~E + ~J× ~B

)
− ε

∂(~ES)
∂t

+
1
µ

~∇× (~BS) +
S
µ

(
∂~E
c2∂t

− ~∇× ~B

)
=

(
ρ~E + ~J× ~B

)
− ε

∂(~ES)
∂t

+
1
µ

~∇× (~BS) + S
(
−~J− 1

µ
~∇S

)
=

(
ρ~E + ~J× ~B− S~J

)
+

1
µ

(
−∂(~ES)

c2∂t
+ ~∇× (~BS)− S~∇S

)
(89)

This shows that the current regauge not only changes the biquaternion Lorentz
force, but also introduces extra terms with respect to the field energy, radiation
energy flow and the stress tensor.

4.4 The source of scalar field S

Including the extra scalar field in the Maxwell equations rises the question how to
induce this field. Keeping in mind that the potentials always satisfy the Lorenz
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inhomogeneous wave equations after the current regauge, and that the retarded
potentials are solutions of these wave equations, it is necessary to verify if a scalar
field can be derived from the retarded potentials:

Φ(~x, t) =
1

4πε0

∫

V

ρ(~x′, t′ret)
|~x− ~x′| d3x′ (90)

~A(~x, t) =
µ0

4π

∫

V

~j(~x′, t′ret)
|~x− ~x′| d3x′ (91)

t′ret = t− |~x− ~x′|
c

(92)

This can be done by Fourier analysis. The Fourier transformed retarded potentials
are defined by:

Φ(~x, ω) =
1

4πε0

∫

V

ρ(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′ (93)

~A(~x, ω) =
µ0

4π

∫

V

~j(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′ (94)

with

ρ(~x′, ω) =
1
2π

∫ ∞

−∞
ρ(~x′, t)eiωtdt (95)

~j(~x′, ω) =
1
2π

∫ ∞

−∞
~j(~x′, t)eiωtdt (96)

The Fourier transformed scalar field is defined as

S(~x, ω) =
1
c2

∂Φ(~x, ω)
∂t

+ ~∇ · ~A(~x, ω)

= −iω
1

4πc2ε0

∫

V

ρ(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′ + ~∇ ·

(
µ0

4π

∫

V

~j(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′

)

= −iω
µ0

4π

∫

V

ρ(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′ +

~µ0

4π

∫

V

~j(~x′, ω) · ∇
(

eik|~x−~x′|

|~x− ~x′|

)
d3x′

(97)

By using the Fourier transform of the continuity equation

~∇′ ·~j(~x′, ω)− iωρ(~x′, ω) = 0 (98)

it is possible to evaluate further the first integral:

−iω
µ0

4π

∫

V

ρ(~x′, ω)
eik|~x−~x′|

|~x− ~x′| d
3x′ = −µ0

4π

∫

V

(
~∇′ ·~j(~x′, ω)

) eik|~x−~x′|

|~x− ~x′| d
3x′

= −µ0

4π

∫

V

~∇′ ·
(
~j(~x′, ω)

eik|~x−~x′|

|~x− ~x′|

)
d3x′

+
~µ0

4π

∫

V

~j(~x′, ω) · ∇′
(

eik|~x−~x′|

|~x− ~x′|

)
d3x′

=
~µ0

4π

∫

V

~j(~x′, ω) · ∇′
(

eik|~x−~x′|

|~x− ~x′|

)
d3x′ (99)
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In the last step Gauss’s theorem was applied: the first integral term vanishes if
~j(~x′, ω) is assumed to be limited and tends to zero at large distances. The final
expression for the scalar field in frequency domain is:

S(~x, ω) =
~µ0

4π

∫

V

~j(~x′, ω) · ∇′
(

eik|~x−~x′|

|~x− ~x′|

)
d3x′ +

~µ0

4π

∫

V

~j(~x′, ω) · ∇
(

eik|~x−~x′|

|~x− ~x′|

)
d3x′

= 0 (100)

The inverse Fourier transform of this expression gives us the expression for the
S field in time domain: S(~x, t) = 0. In a similar way one can derive the same
result for the advanced potentials. Also in case that S is derived from the Liénard-
Wiechert potentials, which are a special case retarded potentials, one finds that
S=0. However, the retarded and advanced potentials are not the most general
solutions of the Lorenz inhomogeneous wave equations. An interesting special case
for getting a non zero S is by setting ~E = ~0 and ~B = ~0. In this case the field
equations are

∂S
∂t

=
ρ

ε
(101)

−~∇S = µ ~J (102)

Adding the gradient of the first equation to the time differential of the second
equation gives

0 =
1
ε
~∇ρ + µ

∂~J
∂t

(103)

The divergence of this equation (and using the continuity of charge equation) finally
gives

0 = ~∇ · ~∇ρ− 1
c2

∂2ρ

∂t2
(104)

which is a charge density wave. Also in this case the scalar field is a wave, but
directly associated with a charge density wave. In classical electrodynamics there
cannot be sources without the presence of an electric or magnetic field. In this
theory it is possible to have sources that only induce a scalar field. This example
shows that the scalar field can be sourced directly by a dynamic charge density
distribution.

5 Conclusions

It is possible to describe classical electrodynamics in the form of two biquaternion
equations. This form is very useful in order to generalise electrodynamics. General-
ising the Maxwell equation by introducing an extra scalar field is comparable with
Maxwell’s introduction of the displacement current that allowed for the derivation
of the homogeneous field wave equations. This theory predicts the existance of
longitudinal electroscalar waves in vacuum. Such a wave might be used to transmit
and receive signals. The power density vector of LES waves is ~ES , thus energetic
and wireless signals might be transmittable in LES wave form and received at a
distance.
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